the Energy to Lead

Hybrid Membrane/Absorption Process for Post-Combustion CO₂ Capture (Membrane Contactor)

Jim Zhou, Howard Meyer, and Ben Bikson

Sept. 15, 2010 DE-FE0004787

Outline

- Introduction of GTI and PoroGen
- Project Overview
- Fundamentals of Membrane Contactor Technology
- Project Objectives and Approach
- Plan and Summary

Facilities & Staff

>Main Facility:

18-Acre Campus Near Chicago

- Over 200,000 ft² of laboratory space
- 28 specialized laboratories and facilities

>Staff of 250

- 70% are scientists and engineers
- 45% with advanced degrees

Flex-Fuel Test Facility

Energy & Environmental Technology Center

Specific GTI Programs Related to CCS

- R&D on membrane contactor (Carbo-Lock™) Technology for pre-.
 and post-combustion CCS
- Morphysorb[®] for pre-combustion CO₂ capture, natural gas CO₂ removal
- U-Gas[®] fluidized-bed coal or biomass gasification
- Wood gasification (to liquid transportation fuels) and gas cleanup
- Selective removal/recovery of H₂S from syngas (UCSRP)
- CO₂ to Biomethane (Algae)
- Regional Partnership for Carbon Capture (SW and Midwest Partnerships)
- Reservoir monitoring and site selection

PoroGen Technology

- >Material technology company
- >Building products manufactured from specialty high performance plastic PEEK
- >Core of PoroGen's patented technology is porous PEEK materials
- >Diverse line of products ranging from membrane fluid separation filters to heat transfer devices
- >Module area up to 1000 ft2 and module diameter from 2 to 12 inches

Project Overview

Overall Budget

Total Budget: \$3,736 K

Federal \$2,986 K

Cost Share \$750 K

✓ ICCI \$375K

✓ Midwest Generations \$225K

✓ PoroGen \$150K

- Performance Date
 - Oct. 1, 2010 Sept. 30, 2013

Performing Organization and Key Staff

- Gas Technology Institute
 - Jim Zhou as PI, Howard Meyer as PM
 - Working on process development and testing
- PoroGen
 - Ben Bikson and Yong Ding
 - Working on membrane and membrane module development
- Aker Process Systems
 - Pal Nokleby
 - Working on membrane process modeling and economic analysis
- Midwest Generations EME, LLC
 - Kent Wanninger
 - Pilot test site

Fundamentals of Membrane Contactor Technology

Basic Principles

Membrane mass transfer principle

- Porous, hollow fiber membrane
- Unique membrane material, PEEK
- Membrane matrix filled with gas
- Mass transfer by diffusion reaction
- Driving force: difference in partial pressures of component to be removed/absorbed (PCO₂(g)>PCO₂(l))
- Liquid on one side, gas on the other side of the membrane
- Pressure difference between shell and tube side almost zero
- $(P_1 \ge P_g)$, i.e. the mass transfer is not pressure driven

Process Description

Flue Gas Afft FGD 40 to 80 C 16 to 20 psia

General Approach

Hybrid membrane/solvent absorption process

- Nano-porous, superhydrophobic PEEK hollow fiber membrane
- Increases interfacial gas/liquid contact area 10x over conventional packed or tray columns — increases overall mass transfer coefficient
- Selectivity controlled by solvent chemical affinity
- Low steam regeneration energy
- CO₂ can be generated at pressure
- Planned slipstream test at Midwest Generation's Joliet Power Station (Size: 25 kWe)

Process Features

 The gas/liquid contactor is a hybrid between membrane and the conventional absorption processes.

Process features:

- Higher CO₂ loading differential between rich and lean solvent is possible
- Increased mass transfer reduces system size
- High specific surface area available for mass transfer
- Independent gas and liquid flow
- Linear scale up
- Concentrated solvents or specialty absorbents can be used
- Conventional and developmental solvents

Benefits of Membrane Contactor Process

Conventional Amine Scrubber Column

Carbo-Lock™ Membrane Contactor

Membrane Advantages:

- Capital Cost (CapEx) 35%
- Operating Costs (OpEx) 40%
- Dry Equipment Weight 35%
- Operating Equipment Weight 37%
- Total Operating Weight 47%
- Footprint Requirement 40%
- Height Requirement 60%

^{*}Data by Aker Kvaerner

Previous Work – ePTFE

- GTI worked closely with Kvaerner (now Aker) on ePTFE based membrane contactor process development
- This project was successful technologically
 - ✓ ePTFE system was found to have high mass transfer rate
 - ✓ Resulted in up to 75% reduction in volume and 65% reduction in weight
- GTI worked with Kvaerner, Duke Energy, and Chevron on membrane contactor field tests for dehydration
 - Successfully demonstrated the technology
- Wetting of pores observed resulting in solvent loss and loss of productivity
- Process economics was high due to
 - High cost of ePTFE membrane module per attainable performance
 - High cost of pressure control system

Membrane Material Properties of PEEK

- Very high heat resistance
- High rigidity
- High dimensional stability
- Good strength
- Excellent sliding friction behavior
- Excellent chemical resistance
- Excellent hydrolytic stability
- Average pore size 1 to 50 nm
- Average porosity 40 to 70%
- 800 psi water breakthrough pressure

PEEK Hollow Fiber

PEEK can operate continuously in contact with aggressive solvents.

Technology Challenges

- Long-term membrane wetting in contact with solvent
 - By membrane surface treatment
 - By making composite membrane with non-porous coating
- Membrane contactor mass transfer coefficient
 - By optimizing of membrane physical properties
 - By optimizing membrane module physical properties
- Process cost
 - By reducing membrane cost itself through gradual maturity of the technology and large scale production
 - By reducing energy cost of solvent regeneration through novel regeneration methods and deployment of new solvents

Performance Characteristics

• Tests were performed with a variety of absorbents including carbonate solution and amine solvents.

Example: Potassium Carbonate Solution and amines

Inlet P =6 psig

Gas T = 25 C

Liquid T = 50 C

N ₂ ,	K _G a,		
kmol/m²/hr	kmol/(m ³ .hr.kPa)	GPU Equivalent	Solvent
35.27	0.21	3200	K ₂ CO ₃ 20 wt%
34.42	0.56	3512	Amine Solvent
48.02	0.94	4910	Amine Solvent

Process Economics Analysis

CCS economics for pulverized coal power plants

	Pulverized Coal Boiler			
Basis	DOE PC Subcritical		PC Subcritical	
	Case 9 c	Case 10 c	with Membrane Contactor and	
		(MEA)	KS-1 solvent	
CO ₂ Capture	No	Yes	Yes	
Gross Power Output	583,315	679,923	625,000	
(kWe)				
Auxiliary Power	32,870	130,310	75,000	
Requirement				
(kWe)				
Net Power Output	550,445	549,613	550,000	
(kWe)				
LCOE (mills/kWh) a	64.0	118.8	91.0 b	

^a Based on an 85% capacity factor

^b Value is based on membrane cost of \$100/m²

c Case 9 and 10 are from "Cost and Performance Baseline for Fossil Energy Plants," DOE/NETL-2007/1281

Sensitivity Analysis of LCOE

LCOE Vs. Membrane Cost

Project Objectives and General Approaches

Objectives

- Overall objective: To develop cost effective separation technology for CO₂ capture from flue gases based on a hollow fiber membrane contactor technology
 - 1. A highly chemically inert and temperature stable PEEK hollow fiber membrane for contactors
 - 2. Integrated membrane absorber and desorber, and,
 - 3. An energy efficient process for CO₂ recovery from the flue gas

Lab Membrane Test Unit P&ID

Test Rig to Be Built

- Design Approach
 - ✓ Complete solvent cycle with absorption and regeneration
- Process monitoring, control and automation
- Data gathering and analysis

Tasks and Activities

Plans for Further Testing

- Pilot-scale Field Testing of Membrane Contactor
 - Objective: Process validation and performance testing with realistic feed
- Engineering and Economics
 - Objective: Engineering components, integration into power plant, economic impact of technology on COE
- Demonstration-scale Field Testing of Membrane Contactor
 - Objective: Scale-up testing to obtain engineering parameters for design of full-scale units

Steps After Current Technology Development Project

- Membrane module scale up
- Bench scale testing at pilot scale
- Determine operational challenges and membrane life
- Technology scale up and demonstration
- Detailed process and economic modeling using plant data

Summary

- We have a well laid out plan for successful development of the membrane contactor technology
- Preliminary economics promising
- Membrane contactor technology has many advantages over other competing technologies for carbon capture

Acknowledgement

- DOE-NETL, Program Manger: Andrew O'Palko
- ICCI for financial support
- Midwest Generation EME, LLC for test site and financial support

